Sufficient Statistics for Unobserved Heterogeneity in Structural Dynamic Logit Models

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Victor Aguirregabiria, Jiaying Gu, Yao Luo

Ngôn ngữ: eng

Ký hiệu phân loại: 001.434 Experimental method

Thông tin xuất bản: 2018

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 161926

Comment: 57 pagesWe study the identification and estimation of structural parameters in dynamic panel data logit models where decisions are forward-looking and the joint distribution of unobserved heterogeneity and observable state variables is nonparametric, i.e., fixed-effects model. We consider models with two endogenous state variables: the lagged decision variable, and the time duration in the last choice. This class of models includes as particular cases important economic applications such as models of market entry-exit, occupational choice, machine replacement, inventory and investment decisions, or dynamic demand of differentiated products. The identification of structural parameters requires a sufficient statistic that controls for unobserved heterogeneity not only in current utility but also in the continuation value of the forward-looking decision problem. We obtain the minimal sufficient statistic and prove identification of some structural parameters using a conditional likelihood approach. We apply this estimator to a machine replacement model.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH