The Finite Sample Performance of Treatment Effects Estimators based on the Lasso

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Michael Zimmert

Ngôn ngữ: eng

Ký hiệu phân loại: 517.6 [Unassigned]

Thông tin xuất bản: 2018

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 161937

Comment: 29 pages, 4 figures, 3 tablesThis paper contributes to the literature on treatment effects estimation with machine learning inspired methods by studying the performance of different estimators based on the Lasso. Building on recent work in the field of high-dimensional statistics, we use the semiparametric efficient score estimation structure to compare different estimators. Alternative weighting schemes are considered and their suitability for the incorporation of machine learning estimators is assessed using theoretical arguments and various Monte Carlo experiments. Additionally we propose an own estimator based on doubly robust Kernel matching that is argued to be more robust to nuisance parameter misspecification. In the simulation study we verify theory based intuition and find good finite sample properties of alternative weighting scheme estimators like the one we propose.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH