Flexible shrinkage in high-dimensional Bayesian spatial autoregressive models

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Michael Pfarrhofer, Philipp Piribauer

Ngôn ngữ: eng

Ký hiệu phân loại: 512.5 Linear algebra

Thông tin xuất bản: 2018

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 161955

 Comment: Keywords: Matrix exponential spatial specification, model selection, shrinkage priors, hierarchical modeling
  JEL: C11, C21, C52This article introduces two absolutely continuous global-local shrinkage priors to enable stochastic variable selection in the context of high-dimensional matrix exponential spatial specifications. Existing approaches as a means to dealing with overparameterization problems in spatial autoregressive specifications typically rely on computationally demanding Bayesian model-averaging techniques. The proposed shrinkage priors can be implemented using Markov chain Monte Carlo methods in a flexible and efficient way. A simulation study is conducted to evaluate the performance of each of the shrinkage priors. Results suggest that they perform particularly well in high-dimensional environments, especially when the number of parameters to estimate exceeds the number of observations. For an empirical illustration we use pan-European regional economic growth data.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH