Ill-posed Estimation in High-Dimensional Models with Instrumental Variables

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Christoph Breunig, Enno Mammen, Anna Simoni

Ngôn ngữ: eng

Ký hiệu phân loại: 511.4 Approximations formerly also 513.24 and expansions

Thông tin xuất bản: 2018

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 161973

This paper is concerned with inference about low-dimensional components of a high-dimensional parameter vector $\beta^0$ which is identified through instrumental variables. We allow for eigenvalues of the expected outer product of included and excluded covariates, denoted by $M$, to shrink to zero as the sample size increases. We propose a novel estimator based on desparsification of an instrumental variable Lasso estimator, which is a regularized version of 2SLS with an additional correction term. This estimator converges to $\beta^0$ at a rate depending on the mapping properties of $M$ captured by a sparse link condition. Linear combinations of our estimator of $\beta^0$ are shown to be asymptotically normally distributed. Based on consistent covariance estimation, our method allows for constructing confidence intervals and statistical tests for single or low-dimensional components of $\beta^0$. In Monte-Carlo simulations we analyze the finite sample behavior of our estimator.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH