Asymptotic Refinements of a Misspecification-Robust Bootstrap for Generalized Method of Moments Estimators

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Seojeong Lee

Ngôn ngữ: eng

Ký hiệu phân loại: 511.4 Approximations formerly also 513.24 and expansions

Thông tin xuất bản: 2018

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 161982

I propose a nonparametric iid bootstrap that achieves asymptotic refinements for t tests and confidence intervals based on GMM estimators even when the model is misspecified. In addition, my bootstrap does not require recentering the moment function, which has been considered as critical for GMM. Regardless of model misspecification, the proposed bootstrap achieves the same sharp magnitude of refinements as the conventional bootstrap methods which establish asymptotic refinements by recentering in the absence of misspecification. The key idea is to link the misspecified bootstrap moment condition to the large sample theory of GMM under misspecification of Hall and Inoue (2003). Two examples are provided: Combining data sets and invalid instrumental variables.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH