Orthogonal Random Forest for Causal Inference

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Miruna Oprescu, Vasilis Syrgkanis, Zhiwei Steven Wu

Ngôn ngữ: eng

Ký hiệu phân loại: 003.76 Stochastic systems

Thông tin xuất bản: 2018

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 161994

Comment: This paper appeared in the Proceedings of the 36th International Conference on Machine LearningWe propose the orthogonal random forest, an algorithm that combines Neyman-orthogonality to reduce sensitivity with respect to estimation error of nuisance parameters with generalized random forests (Athey et al., 2017)--a flexible non-parametric method for statistical estimation of conditional moment models using random forests. We provide a consistency rate and establish asymptotic normality for our estimator. We show that under mild assumptions on the consistency rate of the nuisance estimator, we can achieve the same error rate as an oracle with a priori knowledge of these nuisance parameters. We show that when the nuisance functions have a locally sparse parametrization, then a local $\ell_1$-penalized regression achieves the required rate. We apply our method to estimate heterogeneous treatment effects from observational data with discrete treatments or continuous treatments, and we show that, unlike prior work, our method provably allows to control for a high-dimensional set of variables under standard sparsity conditions. We also provide a comprehensive empirical evaluation of our algorithm on both synthetic and real data.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH