LASSO-Driven Inference in Time and Space

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Victor Chernozhukov, Wolfgang K Härdle, Chen Huang, Weining Wang

Ngôn ngữ: eng

Ký hiệu phân loại: 516.5 Projective geometry

Thông tin xuất bản: 2018

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 162006

We consider the estimation and inference in a system of high-dimensional regression equations allowing for temporal and cross-sectional dependency in covariates and error processes, covering rather general forms of weak temporal dependence. A sequence of regressions with many regressors using LASSO (Least Absolute Shrinkage and Selection Operator) is applied for variable selection purpose, and an overall penalty level is carefully chosen by a block multiplier bootstrap procedure to account for multiplicity of the equations and dependencies in the data. Correspondingly, oracle properties with a jointly selected tuning parameter are derived. We further provide high-quality de-biased simultaneous inference on the many target parameters of the system. We provide bootstrap consistency results of the test procedure, which are based on a general Bahadur representation for the $Z$-estimators with dependent data. Simulations demonstrate good performance of the proposed inference procedure. Finally, we apply the method to quantify spillover effects of textual sentiment indices in a financial market and to test the connectedness among sectors.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH