Stochastic model specification in Markov switching vector error correction models

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Niko Hauzenberger, Florian Huber, Michael Pfarrhofer, Thomas O Zörner

Ngôn ngữ: eng

Ký hiệu phân loại: 003.76 Stochastic systems

Thông tin xuất bản: 2018

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 162041

 Comment: Keywords: Nonlinear vector error correction model, hierarchical modeling, inflation forecasting, Euro area
  JEL: C11, C32, E31, E32, E44This paper proposes a hierarchical modeling approach to perform stochastic model specification in Markov switching vector error correction models. We assume that a common distribution gives rise to the regime-specific regression coefficients. The mean as well as the variances of this distribution are treated as fully stochastic and suitable shrinkage priors are used. These shrinkage priors enable to assess which coefficients differ across regimes in a flexible manner. In the case of similar coefficients, our model pushes the respective regions of the parameter space towards the common distribution. This allows for selecting a parsimonious model while still maintaining sufficient flexibility to control for sudden shifts in the parameters, if necessary. We apply our modeling approach to real-time Euro area data and assume transition probabilities between expansionary and recessionary regimes to be driven by the cointegration errors. The results suggest that the regime allocation is governed by a subset of short-run adjustment coefficients and regime-specific variance-covariance matrices. These findings are complemented by an out-of-sample forecast exercise, illustrating the advantages of the model for predicting Euro area inflation in real time.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH