Dynamic discrete choice models often discretize the state vector and restrict its dimension in order to achieve valid inference. I propose a novel two-stage estimator for the set-identified structural parameter that incorporates a high-dimensional state space into the dynamic model of imperfect competition. In the first stage, I estimate the state variable's law of motion and the equilibrium policy function using machine learning tools. In the second stage, I plug the first-stage estimates into a moment inequality and solve for the structural parameter. The moment function is presented as the sum of two components, where the first one expresses the equilibrium assumption and the second one is a bias correction term that makes the sum insensitive (i.e., orthogonal) to first-stage bias. The proposed estimator uniformly converges at the root-N rate and I use it to construct confidence regions. The results developed here can be used to incorporate high-dimensional state space into classic dynamic discrete choice models, for example, those considered in Rust (1987), Bajari et al. (2007), and Scott (2013).