Extrapolating Treatment Effects in Multi-Cutoff Regression Discontinuity Designs

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Matias D Cattaneo, Luke Keele, Rocio Titiunik, Gonzalo Vazquez-Bare

Ngôn ngữ: eng

Ký hiệu phân loại: 385 *Railroad transportation

Thông tin xuất bản: 2018

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 162135

In non-experimental settings, the Regression Discontinuity (RD) design is one of the most credible identification strategies for program evaluation and causal inference. However, RD treatment effect estimands are necessarily local, making statistical methods for the extrapolation of these effects a key area for development. We introduce a new method for extrapolation of RD effects that relies on the presence of multiple cutoffs, and is therefore design-based. Our approach employs an easy-to-interpret identifying assumption that mimics the idea of "common trends" in difference-in-differences designs. We illustrate our methods with data on a subsidized loan program on post-education attendance in Colombia, and offer new evidence on program effects for students with test scores away from the cutoff that determined program eligibility.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH