Quantifying the Computational Advantage of Forward Orthogonal Deviations

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Robert F Phillips

Ngôn ngữ: eng

Ký hiệu phân loại: 302.542 Deviation

Thông tin xuất bản: 2018

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 162144

Under suitable conditions, one-step generalized method of moments (GMM) based on the first-difference (FD) transformation is numerically equal to one-step GMM based on the forward orthogonal deviations (FOD) transformation. However, when the number of time periods ($T$) is not small, the FOD transformation requires less computational work. This paper shows that the computational complexity of the FD and FOD transformations increases with the number of individuals ($N$) linearly, but the computational complexity of the FOD transformation increases with $T$ at the rate $T^{4}$ increases, while the computational complexity of the FD transformation increases at the rate $T^{6}$ increases. Simulations illustrate that calculations exploiting the FOD transformation are performed orders of magnitude faster than those using the FD transformation. The results in the paper indicate that, when one-step GMM based on the FD and FOD transformations are the same, Monte Carlo experiments can be conducted much faster if the FOD version of the estimator is used.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH