Shapley-like values without symmetry

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jacob North Clark, Stephen Montgomery-Smith

Ngôn ngữ: eng

Ký hiệu phân loại: 512.84 Algebra

Thông tin xuất bản: 2018

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 162235

 Comment: 27 pages
  corrected typos, minor word choice edits, distilled content, added additional referencesFollowing the work of Lloyd Shapley on the Shapley value, and tangentially the work of Guillermo Owen, we offer an alternative non-probabilistic formulation of part of the work of Robert J. Weber in his 1978 paper "Probabilistic values for games." Specifically, we focus upon efficient but not symmetric allocations of value for cooperative games. We retain standard efficiency and linearity, and offer an alternative condition, "reasonableness," to replace the other usual axioms. In the pursuit of the result, we discover properties of the linear maps that describe the allocations. This culminates in a special class of games for which any other map that is "reasonable, efficient" can be written as a convex combination of members of this special class of allocations, via an application of the Krein-Milman theorem.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH