Quantile Regression Under Memory Constraint

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Xi Chen, Weidong Liu, Yichen Zhang

Ngôn ngữ: eng

Ký hiệu phân loại: 153.14 Mnemonics

Thông tin xuất bản: 2018

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 162304

This paper studies the inference problem in quantile regression (QR) for a large sample size $n$ but under a limited memory constraint, where the memory can only store a small batch of data of size $m$. A natural method is the na\"ive divide-and-conquer approach, which splits data into batches of size $m$, computes the local QR estimator for each batch, and then aggregates the estimators via averaging. However, this method only works when $n=o(m^2)$ and is computationally expensive. This paper proposes a computationally efficient method, which only requires an initial QR estimator on a small batch of data and then successively refines the estimator via multiple rounds of aggregations. Theoretically, as long as $n$ grows polynomially in $m$, we establish the asymptotic normality for the obtained estimator and show that our estimator with only a few rounds of aggregations achieves the same efficiency as the QR estimator computed on all the data. Moreover, our result allows the case that the dimensionality $p$ goes to infinity. The proposed method can also be applied to address the QR problem under distributed computing environment (e.g., in a large-scale sensor network) or for real-time streaming data.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH