Factor-Driven Two-Regime Regression

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Sokbae Lee, Yuan Liao, Myung Hwan Seo, Youngki Shin

Ngôn ngữ: eng

Ký hiệu phân loại: 003 Systems

Thông tin xuất bản: 2018

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 162327

We propose a novel two-regime regression model where regime switching is driven by a vector of possibly unobservable factors. When the factors are latent, we estimate them by the principal component analysis of a panel data set. We show that the optimization problem can be reformulated as mixed integer optimization, and we present two alternative computational algorithms. We derive the asymptotic distribution of the resulting estimator under the scheme that the threshold effect shrinks to zero. In particular, we establish a phase transition that describes the effect of first-stage factor estimation as the cross-sectional dimension of panel data increases relative to the time-series dimension. Moreover, we develop bootstrap inference and illustrate our methods via numerical studies.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH