Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Michael C Knaus, Michael Lechner, Anthony Strittmatter

Ngôn ngữ: eng

Ký hiệu phân loại: 001.434 Experimental method

Thông tin xuất bản: 2018

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 162338

We investigate the finite sample performance of causal machine learning estimators for heterogeneous causal effects at different aggregation levels. We employ an Empirical Monte Carlo Study that relies on arguably realistic data generation processes (DGPs) based on actual data. We consider 24 different DGPs, eleven different causal machine learning estimators, and three aggregation levels of the estimated effects. In the main DGPs, we allow for selection into treatment based on a rich set of observable covariates. We provide evidence that the estimators can be categorized into three groups. The first group performs consistently well across all DGPs and aggregation levels. These estimators have multiple steps to account for the selection into the treatment and the outcome process. The second group shows competitive performance only for particular DGPs. The third group is clearly outperformed by the other estimators.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH