Estimation of High-Dimensional Seemingly Unrelated Regression Models

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Khai X Chiong, Hyungsik Roger Moon, Lidan Tan

Ngôn ngữ: eng

Ký hiệu phân loại: 919.9 Geography of and travel in other parts of world and on extraterrestrial worlds Geography of and travel in Pacific

Thông tin xuất bản: 2018

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 162381

In this paper, we investigate seemingly unrelated regression (SUR) models that allow the number of equations (N) to be large, and to be comparable to the number of the observations in each equation (T). It is well known in the literature that the conventional SUR estimator, for example, the generalized least squares (GLS) estimator of Zellner (1962) does not perform well. As the main contribution of the paper, we propose a new feasible GLS estimator called the feasible graphical lasso (FGLasso) estimator. For a feasible implementation of the GLS estimator, we use the graphical lasso estimation of the precision matrix (the inverse of the covariance matrix of the equation system errors) assuming that the underlying unknown precision matrix is sparse. We derive asymptotic theories of the new estimator and investigate its finite sample properties via Monte-Carlo simulations.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH