Bayesian Inference for Structural Vector Autoregressions Identified by Markov-Switching Heteroskedasticity

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Helmut Lütkepohl, Tomasz Woźniak

Ngôn ngữ: eng

Ký hiệu phân loại: 512.88 Algebra

Thông tin xuất bản: 2018

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 162402

Comment: Keywords: Identification Through Heteroskedasticity, Bayesian Hypotheses Assessment, Markov-switching Models, Mixture Models, Regime ChangeIn this study, Bayesian inference is developed for structural vector autoregressive models in which the structural parameters are identified via Markov-switching heteroskedasticity. In such a model, restrictions that are just-identifying in the homoskedastic case, become over-identifying and can be tested. A set of parametric restrictions is derived under which the structural matrix is globally or partially identified and a Savage-Dickey density ratio is used to assess the validity of the identification conditions. The latter is facilitated by analytical derivations that make the computations fast and numerical standard errors small. As an empirical example, monetary models are compared using heteroskedasticity as an additional device for identification. The empirical results support models with money in the interest rate reaction function.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH