Learning and Selfconfirming Equilibria in Network Games

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Pierpaolo Battigalli, Fabrizio Panebianco, Paolo Pin

Ngôn ngữ: eng

Ký hiệu phân loại: 519.3 Game theory

Thông tin xuất bản: 2018

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 162513

Consider a set of agents who play a network game repeatedly. Agents may not know the network. They may even be unaware that they are interacting with other agents in a network. Possibly, they just understand that their payoffs depend on an unknown state that is, actually, an aggregate of the actions of their neighbors. Each time, every agent chooses an action that maximizes her instantaneous subjective expected payoff and then updates her beliefs according to what she observes. In particular, we assume that each agent only observes her realized payoff. A steady state of the resulting dynamic is a selfconfirming equilibrium given the assumed feedback. We characterize the structure of the set of selfconfirming equilibria in the given class of network games, we relate selfconfirming and Nash equilibria, and we analyze simple conjectural best-reply paths whose limit points are selfconfirming equilibria.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH