Estimating population average treatment effects from experiments with noncompliance

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Kellie Ottoboni, Jason Poulos

Ngôn ngữ: eng

Ký hiệu phân loại: 741.590922 Cartoons, caricatures, comics

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 162542

Comment: Forthcoming, Journal of Causal InferenceRandomized control trials (RCTs) are the gold standard for estimating causal effects, but often use samples that are non-representative of the actual population of interest. We propose a reweighting method for estimating population average treatment effects in settings with noncompliance. Simulations show the proposed compliance-adjusted population estimator outperforms its unadjusted counterpart when compliance is relatively low and can be predicted by observed covariates. We apply the method to evaluate the effect of Medicaid coverage on health care use for a target population of adults who may benefit from expansions to the Medicaid program. We draw RCT data from the Oregon Health Insurance Experiment, where less than one-third of those randomly selected to receive Medicaid benefits actually enrolled.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH