A General Framework for Prediction in Time Series Models

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Eric Beutner, Alexander Heinemann, Stephan Smeekes

Ngôn ngữ: eng

Ký hiệu phân loại: 338.544 General production forecasting and forecasts

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 162604

In this paper we propose a general framework to analyze prediction in time series models and show how a wide class of popular time series models satisfies this framework. We postulate a set of high-level assumptions, and formally verify these assumptions for the aforementioned time series models. Our framework coincides with that of Beutner et al. (2019, arXiv:1710.00643) who establish the validity of conditional confidence intervals for predictions made in this framework. The current paper therefore complements the results in Beutner et al. (2019, arXiv:1710.00643) by providing practically relevant applications of their theory.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH