Testing the Order of Multivariate Normal Mixture Models

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Hiroyuki Kasahara, Katsumi Shimotsu

Ngôn ngữ: eng

Ký hiệu phân loại: 001.434 Experimental method

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 162611

Comment: 54 pages, 2 figuresFinite mixtures of multivariate normal distributions have been widely used in empirical applications in diverse fields such as statistical genetics and statistical finance. Testing the number of components in multivariate normal mixture models is a long-standing challenge even in the most important case of testing homogeneity. This paper develops likelihood-based tests of the null hypothesis of $M_0$ components against the alternative hypothesis of $M_0 + 1$ components for a general $M_0 \geq 1$. For heteroscedastic normal mixtures, we propose an EM test and derive the asymptotic distribution of the EM test statistic. For homoscedastic normal mixtures, we derive the asymptotic distribution of the likelihood ratio test statistic. We also derive the asymptotic distribution of the likelihood ratio test statistic and EM test statistic under local alternatives and show the validity of parametric bootstrap. The simulations show that the proposed test has good finite sample size and power properties.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH