Integrability and Identification in Multinomial Choice Models

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Debopam Bhattacharya

Ngôn ngữ: eng

Ký hiệu phân loại: 003.1 System identification

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 162661

McFadden's random-utility model of multinomial choice has long been the workhorse of applied research. We establish shape-restrictions under which multinomial choice-probability functions can be rationalized via random-utility models with nonparametric unobserved heterogeneity and general income-effects. When combined with an additional restriction, the above conditions are equivalent to the canonical Additive Random Utility Model. The sufficiency-proof is constructive, and facilitates nonparametric identification of preference-distributions without requiring identification-at-infinity type arguments. A corollary shows that Slutsky-symmetry, a key condition for previous rationalizability results, is equivalent to absence of income-effects. Our results imply theory-consistent nonparametric bounds for choice-probabilities on counterfactual budget-sets. They also apply to widely used random-coefficient models, upon conditioning on observable choice characteristics. The theory of partial differential equations plays a key role in our analysis.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH