Model Selection in Utility-Maximizing Binary Prediction

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jiun-Hua Su

Ngôn ngữ: eng

Ký hiệu phân loại: 688.1 Models and miniatures

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 162670

 Comment: Accepted by the Journal of EconometricsThe maximum utility estimation proposed by Elliott and Lieli (2013) can be viewed as cost-sensitive binary classification
  thus, its in-sample overfitting issue is similar to that of perceptron learning. A utility-maximizing prediction rule (UMPR) is constructed to alleviate the in-sample overfitting of the maximum utility estimation. We establish non-asymptotic upper bounds on the difference between the maximal expected utility and the generalized expected utility of the UMPR. Simulation results show that the UMPR with an appropriate data-dependent penalty achieves larger generalized expected utility than common estimators in the binary classification if the conditional probability of the binary outcome is misspecified.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH