The occurrence of antibiotics in freshwater is a global concern, with evidence pointing to potential neurotoxic effects after prolonged exposure. However, data on their impact on behavior, particularly at environmentally relevant concentrations, remain limited. This study examined the motor function of zebrafish larvae exposed to single and mixture of antibiotics from the sulfonamide and fluoroquinolone classes. Ten antibiotics were assessed, namely, fluoroquinolones: ciprofloxacin (CIP), norfloxacin (NOR), pefloxacin (PEF), ofloxacin (OFL), and enrofloxacin (ENR) and sulfonamides: sulfamethoxazole (SMX), sulfadiazine (SDZ), sulfamethazine (SMZ), sulfamerazine (SMR), and sulfadimethoxine (SDM). After 24 h of exposure, single exposures revealed that all antibiotics disrupted at least one typical larval behavior at environmentally relevant concentrations. Larvae showed similarities in the escape response provoked by a vibrating acoustic stimulus (startle) according to the antibiotic class, despite the significantly more severe effects of SDM on startle and SMX on habituation to repetitive acoustic stimulation. Exposures to sulfonamide mixtures caused a non-monotonic effect on the startle response and significantly increased the distance traveled over the visual motor response. On the other hand, fluoroquinolone mixtures at 0.1 and 10 μg L