Identification and Estimation of a Partially Linear Regression Model using Network Data

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Eric Auerbach

Ngôn ngữ: eng

Ký hiệu phân loại: 003.1 System identification

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 162731

I study a regression model in which one covariate is an unknown function of a latent driver of link formation in a network. Rather than specify and fit a parametric network formation model, I introduce a new method based on matching pairs of agents with similar columns of the squared adjacency matrix, the ijth entry of which contains the number of other agents linked to both agents i and j. The intuition behind this approach is that for a large class of network formation models the columns of the squared adjacency matrix characterize all of the identifiable information about individual linking behavior. In this paper, I describe the model, formalize this intuition, and provide consistent estimators for the parameters of the regression model. Auerbach (2021) considers inference and an application to network peer effects.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH