Ensemble Methods for Causal Effects in Panel Data Settings

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Susan Athey, Mohsen Bayati, Guido Imbens, Zhaonan Qu

Ngôn ngữ: eng

Ký hiệu phân loại: 785.719 Ensembles with only one instrument per part

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 162737

This paper studies a panel data setting where the goal is to estimate causal effects of an intervention by predicting the counterfactual values of outcomes for treated units, had they not received the treatment. Several approaches have been proposed for this problem, including regression methods, synthetic control methods and matrix completion methods. This paper considers an ensemble approach, and shows that it performs better than any of the individual methods in several economic datasets. Matrix completion methods are often given the most weight by the ensemble, but this clearly depends on the setting. We argue that ensemble methods present a fruitful direction for further research in the causal panel data setting.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH