Improving the Scalability of a Prosumer Cooperative Game with K-Means Clustering

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Constance Crozier, Liyang Han, Malcolm McCulloch, Thomas Morstyn

Ngôn ngữ: eng

Ký hiệu phân loại: 006.6776 Computer graphics

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 162742

Among the various market structures under peer-to-peer energy sharing, one model based on cooperative game theory provides clear incentives for prosumers to collaboratively schedule their energy resources. The computational complexity of this model, however, increases exponentially with the number of participants. To address this issue, this paper proposes the application of K-means clustering to the energy profiles following the grand coalition optimization. The cooperative model is run with the "clustered players" to compute their payoff allocations, which are then further distributed among the prosumers within each cluster. Case studies show that the proposed method can significantly improve the scalability of the cooperative scheme while maintaining a high level of financial incentives for the prosumers.Comment: 6 pages, 4 figures, 2 tables. Accepted to the 13th IEEE PES PowerTech Conference, 23-27 June 2019, Milano, Italy
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH