Post-Selection Inference in Three-Dimensional Panel Data

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Harold D Chiang, Joel Rodrigue, Yuya Sasaki

Ngôn ngữ: eng

Ký hiệu phân loại: 521.32 Celestial mechanics

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 162754

Three-dimensional panel models are widely used in empirical analysis. Researchers use various combinations of fixed effects for three-dimensional panels. When one imposes a parsimonious model and the true model is rich, then it incurs mis-specification biases. When one employs a rich model and the true model is parsimonious, then it incurs larger standard errors than necessary. It is therefore useful for researchers to know correct models. In this light, Lu, Miao, and Su (2018) propose methods of model selection. We advance this literature by proposing a method of post-selection inference for regression parameters. Despite our use of the lasso technique as means of model selection, our assumptions allow for many and even all fixed effects to be nonzero. Simulation studies demonstrate that the proposed method is more precise than under-fitting fixed effect estimators, is more efficient than over-fitting fixed effect estimators, and allows for as accurate inference as the oracle estimator.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH