Dynamically Optimal Treatment Allocation

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Karun Adusumilli, Friedrich Geiecke, Claudio Schilter

Ngôn ngữ: eng

Ký hiệu phân loại: 519.6 Mathematical optimization formerly 519.3

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 162761

Comment: 92 pagesDynamic decisions are pivotal to economic policy making. We show how existing evidence from randomized control trials can be utilized to guide personalized decisions in challenging dynamic environments with budget and capacity constraints. Recent advances in reinforcement learning now enable the solution of many complex, real-world problems for the first time. We allow for restricted classes of policy functions and prove that their regret decays at rate n^(-0.5), the same as in the static case. Applying our methods to job training, we find that by exploiting the problem's dynamic structure, we achieve significantly higher welfare compared to static approaches.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH