Local Polynomial Estimation of Time-Varying Parameters in Nonlinear Models

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Dennis Kristensen, Young Jun Lee

Ngôn ngữ: eng

Ký hiệu phân loại: 003.75 Nonlinear systems

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 162779

We develop a novel asymptotic theory for local polynomial (quasi-) maximum-likelihood estimators of time-varying parameters in a broad class of nonlinear time series models. Under weak regularity conditions, we show the proposed estimators are consistent and follow normal distributions in large samples. Our conditions impose weaker smoothness and moment conditions on the data-generating process and its likelihood compared to existing theories. Furthermore, the bias terms of the estimators take a simpler form. We demonstrate the usefulness of our general results by applying our theory to local (quasi-)maximum-likelihood estimators of a time-varying VAR's, ARCH and GARCH, and Poisson autogressions. For the first three models, we are able to substantially weaken the conditions found in the existing literature. For the Poisson autogression, existing theories cannot be be applied while our novel approach allows us to analyze it.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH