Stochastic Comparative Statics in Markov Decision Processes

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Bar Light

Ngôn ngữ: eng

Ký hiệu phân loại: 003.76 Stochastic systems

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 162782

In multi-period stochastic optimization problems, the future optimal decision is a random variable whose distribution depends on the parameters of the optimization problem. We analyze how the expected value of this random variable changes as a function of the dynamic optimization parameters in the context of Markov decision processes. We call this analysis \emph{stochastic comparative statics}. We derive both \emph{comparative statics} results and \emph{stochastic comparative statics} results showing how the current and future optimal decisions change in response to changes in the single-period payoff function, the discount factor, the initial state of the system, and the transition probability function. We apply our results to various models from the economics and operations research literature, including investment theory, dynamic pricing models, controlled random walks, and comparisons of stationary distributions.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH