Subgeometrically ergodic autoregressions

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Mika Meitz, Pentti Saikkonen

Ngôn ngữ: eng

Ký hiệu phân loại: 513.4 Arithmetic and geometric progressions

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 162802

Comment: Feb 2020: Major revision (most significant changes in Section 5)In this paper we discuss how the notion of subgeometric ergodicity in Markov chain theory can be exploited to study stationarity and ergodicity of nonlinear time series models. Subgeometric ergodicity means that the transition probability measures converge to the stationary measure at a rate slower than geometric. Specifically, we consider suitably defined higher-order nonlinear autoregressions that behave similarly to a unit root process for large values of the observed series but we place almost no restrictions on their dynamics for moderate values of the observed series. Results on the subgeometric ergodicity of nonlinear autoregressions have previously appeared only in the first-order case. We provide an extension to the higher-order case and show that the autoregressions we consider are, under appropriate conditions, subgeometrically ergodic. As useful implications we also obtain stationarity and $\beta$-mixing with subgeometrically decaying mixing coefficients.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH