Averaging plus Learning Models and Their Asymptotics

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Ionel Popescu, Tushar Vaidya

Ngôn ngữ: eng

Ký hiệu phân loại: 511.4 Approximations formerly also 513.24 and expansions

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 162814

Comment: 34 pages, 8 figuresWe develop original models to study interacting agents in financial markets and in social networks. Within these models randomness is vital as a form of shock or news that decays with time. Agents learn from their observations and learning ability to interpret news or private information in time-varying networks. Under general assumption on the noise, a limit theorem is developed for the generalised DeGroot framework for certain type of conditions governing the learning. In this context, the agents beliefs (properly scaled) converge in distribution that is not necessarily normal. Fresh insights are gained not only from proposing a new setting for social learning models but also from using different techniques to study discrete time random linear dynamical systems.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH