Asymptotic Behavior of Bayesian Learners with Misspecified Models

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Ignacio Esponda, Demian Pouzo, Yuichi Yamamoto

Ngôn ngữ: eng

Ký hiệu phân loại: 511.4 Approximations formerly also 513.24 and expansions

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 162819

We consider an agent who represents uncertainty about the environment via a possibly misspecified model. Each period, the agent takes an action, observes a consequence, and uses Bayes' rule to update her belief about the environment. This framework has become increasingly popular in economics to study behavior driven by incorrect or biased beliefs. Current literature has characterized asymptotic behavior under fairly specific assumptions. By first showing that the key element to predict the agent's behavior is the frequency of her past actions, we are able to characterize asymptotic behavior in general settings in terms of the solutions of a generalization of a differential equation that describes the evolution of the frequency of actions. We then present a series of implications that can be readily applied to economic applications, thus providing off-the-shelf tools that can be used to characterize behavior under misspecified learning.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH