Ridge regularization for Mean Squared Error Reduction in Regression with Weak Instruments

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Karthik Rajkumar

Ngôn ngữ: eng

Ký hiệu phân loại: 526.5 Mathematical geography

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 162820

Comment: 20 pagesIn this paper, I show that classic two-stage least squares (2SLS) estimates are highly unstable with weak instruments. I propose a ridge estimator (ridge IV) and show that it is asymptotically normal even with weak instruments, whereas 2SLS is severely distorted and un-bounded. I motivate the ridge IV estimator as a convex optimization problem with a GMM objective function and an L2 penalty. I show that ridge IV leads to sizable mean squared error reductions theoretically and validate these results in a simulation study inspired by data designs of papers published in the American Economic Review.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH