Identification of Regression Models with a Misclassified and Endogenous Binary Regressor

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Hiroyuki Kasahara, Katsumi Shimotsu

Ngôn ngữ: eng

Ký hiệu phân loại: 688.1 Models and miniatures

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 162831

 Comment: 25 pagesWe study identification in nonparametric regression models with a misclassified and endogenous binary regressor when an instrument is correlated with misclassification error. We show that the regression function is nonparametrically identified if one binary instrument variable and one binary covariate satisfy the following conditions. The instrumental variable corrects endogeneity
  the instrumental variable must be correlated with the unobserved true underlying binary variable, must be uncorrelated with the error term in the outcome equation, but is allowed to be correlated with the misclassification error. The covariate corrects misclassification
  this variable can be one of the regressors in the outcome equation, must be correlated with the unobserved true underlying binary variable, and must be uncorrelated with the misclassification error. We also propose a mixture-based framework for modeling unobserved heterogeneous treatment effects with a misclassified and endogenous binary regressor and show that treatment effects can be identified if the true treatment effect is related to an observed regressor and another observable variable.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH