A Uniform Bound on the Operator Norm of Sub-Gaussian Random Matrices and Its Applications

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Grigory Franguridi, Hyungsik Roger Moon

Ngôn ngữ: eng

Ký hiệu phân loại: 512.74 Algebraic number theory

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 162860

For an $N \times T$ random matrix $X(\beta)$ with weakly dependent uniformly sub-Gaussian entries $x_{it}(\beta)$ that may depend on a possibly infinite-dimensional parameter $\beta\in \mathbf{B}$, we obtain a uniform bound on its operator norm of the form $\mathbb{E} \sup_{\beta \in \mathbf{B}} ||X(\beta)|| \leq CK \left(\sqrt{\max(N,T)} + \gamma_2(\mathbf{B},d_\mathbf{B})\right)$, where $C$ is an absolute constant, $K$ controls the tail behavior of (the increments of) $x_{it}(\cdot)$, and $\gamma_2(\mathbf{B},d_\mathbf{B})$ is Talagrand's functional, a measure of multi-scale complexity of the metric space $(\mathbf{B},d_\mathbf{B})$. We illustrate how this result may be used for estimation that seeks to minimize the operator norm of moment conditions as well as for estimation of the maximal number of factors with functional data.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH