Non-standard inference for augmented double autoregressive models with null volatility coefficients

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Feiyu Jiang, Dong Li, Ke Zhu

Ngôn ngữ: eng

Ký hiệu phân loại: 003.75 Nonlinear systems

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 162866

This paper considers an augmented double autoregressive (DAR) model, which allows null volatility coefficients to circumvent the over-parameterization problem in the DAR model. Since the volatility coefficients might be on the boundary, the statistical inference methods based on the Gaussian quasi-maximum likelihood estimation (GQMLE) become non-standard, and their asymptotics require the data to have a finite sixth moment, which narrows applicable scope in studying heavy-tailed data. To overcome this deficiency, this paper develops a systematic statistical inference procedure based on the self-weighted GQMLE for the augmented DAR model. Except for the Lagrange multiplier test statistic, the Wald, quasi-likelihood ratio and portmanteau test statistics are all shown to have non-standard asymptotics. The entire procedure is valid as long as the data is stationary, and its usefulness is illustrated by simulation studies and one real example.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH