Smoothing quantile regressions

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Marcelo Fernandes, Emmanuel Guerre, Eduardo Horta

Ngôn ngữ: eng

Ký hiệu phân loại: 003.75 Nonlinear systems

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 162924

Comment: Expression of optimal AMSE in Theorem 4 has been corrected. Accepted at Journal of Business Economics and StatisticsWe propose to smooth the entire objective function, rather than only the check function, in a linear quantile regression context. Not only does the resulting smoothed quantile regression estimator yield a lower mean squared error and a more accurate Bahadur-Kiefer representation than the standard estimator, but it is also asymptotically differentiable. We exploit the latter to propose a quantile density estimator that does not suffer from the curse of dimensionality. This means estimating the conditional density function without worrying about the dimension of the covariate vector. It also allows for two-stage efficient quantile regression estimation. Our asymptotic theory holds uniformly with respect to the bandwidth and quantile level. Finally, we propose a rule of thumb for choosing the smoothing bandwidth that should approximate well the optimal bandwidth. Simulations confirm that our smoothed quantile regression estimator indeed performs very well in finite samples.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH