Efficient Bayesian estimation for GARCH-type models via Sequential Monte Carlo

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Adam Clements, Christopher Drovandi, Dan Li

Ngôn ngữ: eng

Ký hiệu phân loại: 001.434 Experimental method

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 162986

 Comment: Minor revisions
  replaced the normal innovation of GARCH and GJR-GARCH model with a Student-t innovation
  some updates to the results based on Student-t GARCH and GJR-GARCH (Section 6)The advantages of sequential Monte Carlo (SMC) are exploited to develop parameter estimation and model selection methods for GARCH (Generalized AutoRegressive Conditional Heteroskedasticity) style models. It provides an alternative method for quantifying estimation uncertainty relative to classical inference. Even with long time series, it is demonstrated that the posterior distribution of model parameters are non-normal, highlighting the need for a Bayesian approach and an efficient posterior sampling method. Efficient approaches for both constructing the sequence of distributions in SMC, and leave-one-out cross-validation, for long time series data are also proposed. Finally, an unbiased estimator of the likelihood is developed for the Bad Environment-Good Environment model, a complex GARCH-type model, which permits exact Bayesian inference not previously available in the literature.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH