Bias-Aware Inference in Fuzzy Regression Discontinuity Designs

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Claudia Noack, Christoph Rothe

Ngôn ngữ: eng

Ký hiệu phân loại: 511.31 Nonclassical logic

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 162996

We propose new confidence sets (CSs) for the regression discontinuity parameter in fuzzy designs. Our CSs are based on local linear regression, and are bias-aware, in the sense that they take possible bias explicitly into account. Their construction shares similarities with that of Anderson-Rubin CSs in exactly identified instrumental variable models, and thereby avoids issues with "delta method" approximations that underlie most commonly used existing inference methods for fuzzy regression discontinuity analysis. Our CSs are asymptotically equivalent to existing procedures in canonical settings with strong identification and a continuous running variable. However, due to their particular construction they are also valid under a wide range of empirically relevant conditions in which existing methods can fail, such as setups with discrete running variables, donut designs, and weak identification.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH