Posterior Average Effects

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Stéphane Bonhomme, Martin Weidner

Ngôn ngữ: eng

Ký hiệu phân loại: 154.24 Subconscious and altered states and processes

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 163004

Economists are often interested in estimating averages with respect to distributions of unobservables, such as moments of individual fixed-effects, or average partial effects in discrete choice models. For such quantities, we propose and study posterior average effects (PAE), where the average is computed conditional on the sample, in the spirit of empirical Bayes and shrinkage methods. While the usefulness of shrinkage for prediction is well-understood, a justification of posterior conditioning to estimate population averages is currently lacking. We show that PAE have minimum worst-case specification error under various forms of misspecification of the parametric distribution of unobservables. In addition, we introduce a measure of informativeness of the posterior conditioning, which quantifies the worst-case specification error of PAE relative to parametric model-based estimators. As illustrations, we report PAE estimates of distributions of neighborhood effects in the US, and of permanent and transitory components in a model of income dynamics.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH