Nonparametric estimation in a regression model with additive and multiplicative noise

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Christophe Chesneau, Salima El Kolei, Junke Kou, Fabien Navarro

Ngôn ngữ: eng

Ký hiệu phân loại: 001.434 Experimental method

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 163011

In this paper, we consider an unknown functional estimation problem in a general nonparametric regression model with the feature of having both multiplicative and additive noise.We propose two new wavelet estimators in this general context. We prove that they achieve fast convergence rates under the mean integrated square error over Besov spaces. The obtained rates have the particularity of being established under weak conditions on the model. A numerical study in a context comparable to stochastic frontier estimation (with the difference that the boundary is not necessarily a production function) supports the theory.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH