Permutation inference with a finite number of heterogeneous clusters

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Andreas Hagemann

Ngôn ngữ: eng

Ký hiệu phân loại: 511.34 Model theory

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 163061

 Comment: 28 pages, 3 figures, 2 tables
  final pre-publication versionI introduce a simple permutation procedure to test conventional (non-sharp) hypotheses about the effect of a binary treatment in the presence of a finite number of large, heterogeneous clusters when the treatment effect is identified by comparisons across clusters. The procedure asymptotically controls size by applying a level-adjusted permutation test to a suitable statistic. The adjustments needed for most empirically relevant situations are tabulated in the paper. The adjusted permutation test is easy to implement in practice and performs well at conventional levels of significance with at least four treated clusters and a similar number of control clusters. It is particularly robust to situations where some clusters are much more variable than others. Examples and an empirical application are provided.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH