Random Forest Estimation of the Ordered Choice Model

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Michael Lechner, Gabriel Okasa

Ngôn ngữ: eng

Ký hiệu phân loại: 302.13 Social choice

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 163077

Comment: update: new Python package, new empirical applicationIn this paper we develop a new machine learning estimator for ordered choice models based on the random forest. The proposed Ordered Forest flexibly estimates the conditional choice probabilities while taking the ordering information explicitly into account. In addition to common machine learning estimators, it enables the estimation of marginal effects as well as conducting inference and thus provides the same output as classical econometric estimators. An extensive simulation study reveals a good predictive performance, particularly in settings with non-linearities and near-multicollinearity. An empirical application contrasts the estimation of marginal effects and their standard errors with an ordered logit model. A software implementation of the Ordered Forest is provided both in R and Python in the package orf available on CRAN and PyPI, respectively.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH