Testing for Quantile Sample Selection

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Valentina Corradi, Daniel Gutknecht

Ngôn ngữ: eng

Ký hiệu phân loại: 492.487 Afro-Asiatic languages Semitic languages

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 163109

This paper provides tests for detecting sample selection in nonparametric conditional quantile functions. The first test is an omitted predictor test with the propensity score as the omitted variable. As with any omnibus test, in the case of rejection we cannot distinguish between rejection due to genuine selection or to misspecification. Thus, we suggest a second test to provide supporting evidence whether the cause for rejection at the first stage was solely due to selection or not. Using only individuals with propensity score close to one, this second test relies on an `identification at infinity' argument, but accommodates cases of irregular identification. Importantly, neither of the two tests requires parametric assumptions on the selection equation nor a continuous exclusion restriction. Data-driven bandwidth procedures are proposed, and Monte Carlo evidence suggests a good finite sample performance in particular of the first test. Finally, we also derive an extension of the first test to nonparametric conditional mean functions, and apply our procedure to test for selection in log hourly wages using UK Family Expenditure Survey data as \citet{AB2017}.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH