Testing for Unobserved Heterogeneity via k-means Clustering

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Andrew J Patton, Brian M Weller

Ngôn ngữ: eng

Ký hiệu phân loại: 523.85 Clusters

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 163113

Clustering methods such as k-means have found widespread use in a variety of applications. This paper proposes a formal testing procedure to determine whether a null hypothesis of a single cluster, indicating homogeneity of the data, can be rejected in favor of multiple clusters. The test is simple to implement, valid under relatively mild conditions (including non-normality, and heterogeneity of the data in aspects beyond those in the clustering analysis), and applicable in a range of contexts (including clustering when the time series dimension is small, or clustering on parameters other than the mean). We verify that the test has good size control in finite samples, and we illustrate the test in applications to clustering vehicle manufacturers and U.S. mutual funds.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH