Semiparametric Wavelet-based JPEG IV Estimator for endogenously truncated data

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Nir Billfeld, Moshe Kim

Ngôn ngữ: eng

Ký hiệu phân loại: 005.746 Data compression

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 163184

A new and an enriched JPEG algorithm is provided for identifying redundancies in a sequence of irregular noisy data points which also accommodates a reference-free criterion function. Our main contribution is by formulating analytically (instead of approximating) the inverse of the transpose of JPEGwavelet transform without involving matrices which are computationally cumbersome. The algorithm is suitable for the widely-spread situations where the original data distribution is unobservable such as in cases where there is deficient representation of the entire population in the training data (in machine learning) and thus the covariate shift assumption is violated. The proposed estimator corrects for both biases, the one generated by endogenous truncation and the one generated by endogenous covariates. Results from utilizing 2,000,000 different distribution functions verify the applicability and high accuracy of our procedure to cases in which the disturbances are neither jointly nor marginally normally distributed.Comment: 18 pages
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH