Maximum Approximated Likelihood Estimation

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Michael Griebel, Florian Heiss, Jens Oettershagen, Constantin Weiser

Ngôn ngữ: eng

Ký hiệu phân loại: 511.4 Approximations formerly also 513.24 and expansions

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 163199

Empirical economic research frequently applies maximum likelihood estimation in cases where the likelihood function is analytically intractable. Most of the theoretical literature focuses on maximum simulated likelihood (MSL) estimators, while empirical and simulation analyzes often find that alternative approximation methods such as quasi-Monte Carlo simulation, Gaussian quadrature, and integration on sparse grids behave considerably better numerically. This paper generalizes the theoretical results widely known for MSL estimators to a general set of maximum approximated likelihood (MAL) estimators. We provide general conditions for both the model and the approximation approach to ensure consistency and asymptotic normality. We also show specific examples and finite-sample simulation results.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH