Nonparametric Identification of First-Price Auction with Unobserved Competition: A Density Discontinuity Framework

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Emmanuel Guerre, Yao Luo

Ngôn ngữ: eng

Ký hiệu phân loại: 018.3 +Catalogs arranged by author, main entry, date, or register number

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 163215

We consider nonparametric identification of independent private value first-price auction models, in which the analyst only observes winning bids. Our benchmark model assumes an exogenous number of bidders $N$. We show that, if the bidders observe $N$, the resulting discontinuities in the winning bid density can be used to identify the distribution of $N$. The private value distribution can be nonparametrically identified in a second step. This extends, under testable identification conditions, to the case where $N$ is a number of potential buyers, who bid with some unknown probability. Identification also holds in presence of additive unobserved heterogeneity drawn from some parametric distributions. A parametric Bayesian estimation procedure is proposed. An application to Shanghai Government IT procurements finds that the imposed three bidders participation rule is not effective. This generates loss in the range of as large as $10\%$ of the appraisal budget for small IT contracts.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH